Wednesday, March 18, 2020

PLS (Partial Least Square) (skripsi dan tesis)

PLS (Partial Least Square) menggunakan metoda principle component analiysis dalam model pengukuran, yaitu blok ekstraksi varian untuk melihat hubungan indikator dengan konstruk latennya dengan menghitung total varian yang terdiri atas varian umum (common variance), varian spesifik (specific variance) dan varian error (error variance). Sehingga total varian menjadi tinggi. Metoda ini merupakan salah satu dari metoda dalam Confirmatory Factor Analysis (CFA).
 Menurut Hair et.al. (2006) metoda ini tepat digunakan untuk reduksi data, yaitu menentukan jumlah faktor minimum yang dibutuhkan untuk menghitung porsi maksimum total varian yang direpresentasi dalam seperangkat variabel asalnya. Metoda ini digunakan dengan asumsi peneliti mengetahui bahwa jumlah varian unik dan varian error dalam total varian adalah sedikit. Metoda ini lebih unggul karena dapat mengatasi masalah indeterminacy, yaitu skor faktor yang berbeda dihitung dari model faktor tunggal yang dihasilkan dan admissible data, yaitu ambiguitas data karena adanya varian unik dan varian error. Penelitian ini menggunakan variabel undimensional dengan model indikator reflektif. Variabel undimensional adalah variabel yang dibentuk dari indikatorindikator baik secara reflektif maupun secara formatif (Jogiyanto dan Abdilah, 2009). Sedangkan model indikator reflektif adalah model yang mengansumsikan bahwa kovarian diantara pengukuran dijelaskan oleh varian yang merupakan manifestasi dari konstruk latennya dimana indikatornya merupakannya indikator efek (effect indikator). Menurut Ghozali (2006) Model reflektif sering disebut juga principal factor model dimana covariance pengukuran indikator dipengaruhi oleh konstruk laten. Model refleksif menghipotesiskan bahwa perubahan pada konstruk laten akan mempengaruhi perubahan pada indikator dan menghilangkan satu indikator dari model pengukuran tidak akan merubah makna atau arti konstruk (Bollen dan Lennox, 1991)

No comments:

Post a Comment