Langkah-langkah penerapan metode ARIMA secara berturut-turut adalah identifikasi model, pendugaan parameter model, pemeriksaan diagnosa dan penerapan model untuk peramalan
Model umum dan uji stasioneritas
Stasioneritas berarti tidak terdapat pertumbuhan atau penurunan pada data. Data secara kasarnya harus horizontal sepanjang sumbu waktu. Dengan kata lain, fluktuasi data berada di sekitar suatu nilai rata-rata yang konstan, tidak tergantung pada waktu dan varians dari fluktuasi tersebut atau tetap konstan setiap waktu. Untuk mengetahui stasioner tidaknya data dapat diamati dari time. Penggunaan model untuk peramalan. Pemeriksaan (uji) diagnosa estimasi parameter model indentifikasi model tentatif (sementara) dengan memilih (p,d,q). Rumuskan model umum dan uji stasioneritas data ya atau tidak. Series plot data tersebut, autocorrelation function data atau model trend linier data terhadap waktu.
Suatu data time series yang tidak stasioner harus diubah menjadi data stasioner, karena aspek-aspek AR dan MA dari model ARIMA hanya berkenaan dengan data time series yang stasioner. Salah satu cara yang paling sering dipakai adalah metode pembedaan (differencing) yaitu menghitung perubahan atau selisih nilai observasi. Nilai selisih yang diperoleh dicek lagi apakah stasioner atau tidak. Jika belum stasioner maka dilakukan differencing lagi.
2) Identifikasi model
Setelah data time series yang akan diolah langkah berikutnya adalah penetapan model ARIMA (p,d,q) yang sekiranya cocok. Jika data tidak mengalami differencing, maka d bernilai 0, jika data menjadi stasioner setelah differencing ke- 1 maka d bernilai 1 dan seterusnya. Dalam memilih dan menetapkan p dan qdapat dibantu dengan mengamati pola Autocorrelation Function (ACF) dan Partial Autocorrelation Function (PACF)
Kesalahan yang sering terjadi dalam penentuan p dan q bukan merupakan masalah besar pada tahap ini, karena hal ini akan diketahui pada tahap pemeriksaan diagnosa selanjutnya.
3) Pendugaan parameter model
Ada dua cara yang mendasar untuk mendapatkan parameter-parameter
tersebut:
Ø Dengan cara mencoba-coba (trial and error), menguji beberapa nilai yang berbeda dan memilih satu nilai tersebut (atau sekumpulan nilai, apabila terdapat lebih dari satu parameter yang akan ditaksir) yang meminimumkan jumlah kuadrat nilai sisa (sum of squared residual).
Ø Perbaikan secara iteratif, memilih taksiran awal dan kemudian penghitungan dilakukan Box-Jenkins Computer Program untuk memperhalus penaksiran tersebut secara iteratif.
4) Pemeriksaan diagnosa
Dalam pemeriksaan terhadap model ada beberapa metode yang bisa
dilakukan, antara lain adalah:
- Pengujian model secara keseluruhan (Overall F test) dan pengujian masing masing parameter model secara parsial (t-test), untuk menguji apakah koefisien model signifikan secara statistik atau tidak baik secara keseluruhan maupun parsial
Pemilihan model terbaik
Untuk menentukan model yang terbaik dapat digunakan standard error estimate
Model terbaik adalah model yang memiliki nilai standard error estimate (S) yang paling kecil. Selain nilai standard error estimate, nilai rata-rata persentase kesalahan peramalan (MAPE) dapat juga digunakan sebagai bahan pertimbangan dalam menentukan model yang terbaik yaitu:
6) Penggunaan model untuk peramalan
Jika model terbaik telah ditetapkan, maka model siap digunakan untuk peramalan. Untuk data yang mengalami differencing, bentuk selisih harus dikembalikan pada bentuk awal dengan melakukan proses integral karena yang diperlukan adalah ramalan time series asli. Notasi yang digunakan dalam ARIMA adalah notasi yang mudah dan umum. Misalkan model ARIMA (0,1,1)(0,1,1)9 dijabarkan menjadi sebuah persamaan regresi yang lebih umum
Nilai et+1 tidak akan diketahui, karena nilai yang diharapkan untuk kesalahan random pada masa yang akan datang harus ditetapkan sama dengan nol. Akan tetapi dari model yang disesuaikan (fitted model) kita boleh mengganti nilai et et-8 dan et-9 dengan nilai nilai mereka yang ditetapkan secara empiris (seperti yang diperoleh setelah iterasi terakhir algoritma Marquardt). Tentu saja bila kita meramalkan jauh ke depan, tidak akan kita peroleh nilai empiris untuk “e” sesudah beberapa waktu, dan oleh sebab itu nilai harapan mereka akan seluruhnya nol. Untuk nilai Z pada awal proses peramalan, kita akan mengetahui nilai Zt, Zt-8, Zt-9. Akan tetapi sesudah beberapa saat, nilai Z akan berupa nilai ramalan (forecasted value), bukan nilai-nilai masa lalu yang telah diketahui. Teknik peramalan dengan menggunakan ARIMA juga memberikan confidence interval. Jika peramalan dilakukan jauh ke depan, maka confidence interval umumnya juga akan makin melebar. Namun tidak demikian untuk confidence interval moving average model murni. Peramalan merupakan never ending process yang berarti jika data terbaru muncul, model perlu diduga dan diperiksa kembali.
No comments:
Post a Comment