Ada beberapa istilah yang sering ditemui dalam analisis deret waktu atau
time series analysis :
1. Stasioneritas, berarti tidak ada kenaikan atau penurunan data, yang
merupakan asumsi yang sangat penting dalam suatu analisa deret
waktu. Bila tidak terdapat perubahan pada tren deret waktu maka dapat
disebut stasioner. Maksudnya, rata-rata deret pengamatan di sepanjang
waktu selalu konstan. Apabila suatu data tidak stasioner maka
diperlukan differensiasi pada data tersebut. Yang dimaksud
Differensiasi disini adalah menghitung perubahan atau selisih nilai data
yang diobservasi. Bila data masih belum stasioner maka perlu
didifferensiasi lagi hingga stasioner.
2. Autocerrelation Function (ACF), merupakan korelasi antar deret
pengamatan suatu deret waktuyang disusun dalam plot setiap lag.
3. Partial Autocerrelation Function (PACF), merupakan korelasi antar
deret pengamantan dalam lag-lag pengamatan yang mengukur keeratan
antar pengamatan suatu deret waktu.
4. Cross corelation, untuk mengukur korelasi antart deret waktu, tetapi
korelasi yang diukur adalah korelasi dari dua deret waktu.
5. Proses white noise, merupakan proses stasioner suatu data deret waktu
yang didefinisikan sebagai deret variabel acak yang independen, tidak
berkorelasi, identik, dan terdistribusi.
6. Analisis trend, analisis ini digunakan untuk menaksir model trend
suatu data deret waktu. Ada beberapa model analisis tren, antara lain
model linier, kuadratik, eksponensial, pertumbuhan atau penurunan,
dan model kurva S. Analisis tren digunakan apabila deret waktu tidak
ada komponen musiman.
No comments:
Post a Comment