Wednesday, March 18, 2020
Pengertian PLS (Partial Least Square) (skripsi dan tesis)
PLS (Partial Least Square) merupakan analisis persamaan struktural (SEM) berbasis varian yang secara simultan dapat melakukan pengujian model pengukuran sekaligus pengujian model struktural. Model pengukuran digunakan untuk uji validitas dan reabilitas, sedangkan model struktural digunakan untuk uji kausalitas (pengujian hipotesis dengan model prediksi). Lebih lanjut, Ghozali (2006) menjelaskan bahwa PLS adalah metode analisis yang bersifat soft modeling karena tidak mengasumsikan data harus dengan pengukuran skala tertentu, yang berarti jumlah sampel dapat kecil (dibawah 100 sampel). Perbedaan mendasar PLS yang merupakan SEM berbasis varian dengan LISREL atau AMOS yang berbasis kovarian adalah tujuan penggunaannya. Dibandingkan dengan covariance based SEM (yang diwakili oleh software AMOS, LISREL dan EQS) component based PLS mampu menghindarkan dua masalah besar yang dihadapi oleh covariance based SEM yaitu inadmissible solution dan factor indeterminacy (Tenenhaus et al.,2005). Terdapat beberapa alasan yang menjadi penyebab digunakan PLS dalam suatu penelitian. Dalam penelitian ini alasan-alasan tersebut yaitu: pertama, PLS (Partial Least Square) merupakan metode analisis data yang didasarkan asumsi sampel tidak harus besar, yaitu jumlah sampel kurang dari 100 bisa dilakukan analisis, dan residual distribution. Kedua, PLS (Partial Least Square) dapat digunakan untuk menganalisis teori yang masih dikatakan lemah, karena PLS (Partial Least Square) dapat digunakan untuk prediksi. Ketiga, PLS (Partial Least Square) memungkinkan algoritma dengan menggunakan analisis series ordinary least square (OLS) sehingga diperoleh efisiensi perhitungan olgaritma (Ghozali, 2006). Keempat, pada pendekatan PLS, diasumsikan bahwa semua ukuran variance dapat digunakan untuk menjelaskan
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment