Analisis SEM secara umum dapat dibedakan menjadi Variance Based SEM (VB SEM) dan Covariace Based SEM (CBSEM). Pendekatan PLS-SEM didasarkan pada pergeseran analisis dari pengukuran estimasi parameter model menjadi pengukuran prediksi model yang relevan. PLS-SEM menggunakan algoritma iteratif yang terdiri atas beberapa analisis dengan metode kuadrat terkecil biasa (Ordinary Least Squares). Oleh karena itu, dalam PLS-SEM persoalan identifikasi tidak penting. PLS-SEM justru mampu menangani masalah yang biasanya muncul dalam analisis SEM berbasis kovarian. Pertama, solusi model yang tidak dapat diterima (inadmissible solution) seperti munculnya nilai standardized loading factor > 1 atau varian bernilai 0 atau negatif. Kedua, faktor indeterminacy yaitu faktor yang tidak dapat ditentukan seperti nilai amatan untuk variable laten tidak dapat diproses. Karena PLS memiliki karakteristik algoritma interatif yang khas, maka PLS dapat diterapkan dalam model pengukuran reflektif maupun formatif. Sedangkan analisis CB-SEM hanya menganalisis model pengukuran reflektif (Yamin dan Kurniawan, 2011:15).
Dengan demikian, PLS-SEM dapat dikatakan sebagai komplementari atau pelengkap CB SEM (AMOS dan LISREL) bukannya sebagai pesaing
No comments:
Post a Comment